AP Physics 2 Syllabus

Class Meeting Time: Four 45 minutes periods and one 90 minute period per week.

AP Physics 2 is an algebra-based college-level second year physics course. General physics topics presented during the course closely follow those outlined by the College Board and are based on seven big ideas:

Big Idea 1 – Objects and systems have properties such as mass and charge. Systems may have internal structure.

Big Idea 2 – Fields existing in space can be used to explain interactions.

Big Idea 3 – The interactions of an object with other objects can be described by forces.

Big Idea 4 – Interactions between systems can result in changes in those systems.

Big Idea 5 – Changes that occur as a result of interactions are constrained by conservation laws.

Big Idea 6 – Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical model for the description of other phenomena.

Big Idea 7 – The mathematics of probability can be used to describe the behavior of complex systems and to interpret the behavior of quantum mechanical systems

The structure of the course is designed to allow students to discover and master these big ideas on their own as much as possible. To facilitate this more than 25% of the course is devoted to laboratory experiments and other student centered activities. In these activities students are typically expected to design a procedure and collect data to determine the relationship between variables and/or to derive a physics equation. Students will be expected to carefully collect and organize data, to use the collected data to reach a scientific conclusion and to perform an experimental error analysis during the lab experiments. Students are required to keep laboratory notes for each experiment and will have to write formal lab reports for some experiments and present their findings to their peers for review.

Besides the laboratory work the course will consistently include other types of activities. A normal week in the course consists of one or two teacher-centered instructional periods, two or three student-centered instructional periods and the extended lab period. The teacher-centered instructional periods typically begin with a demonstration or video clip that students are asked to interpret through guided inquiry. This is followed by a presentation of new material pertaining to the demonstration or video clip and the period finishes with a problem solving session based on any new equations related to the material. The student-centered periods typically consist of either a collaborative problem solving session using a released AP exam question that students will work on in small groups or a short experiment/ simulation based activity that students will use to explore fundamental concepts.

Each unit in the AP Physics 2 course will follow the same outline. It will begin with the presentation of a pre-test problem that will be used to initiate discussion of the topics included in the unit and to check for prior knowledge and misconceptions students may have. The pre-test problem will not be collected until the end of the unit and students will be encouraged to work on it over the course of the unit as they learn new material. Each unit will also have an associated problem set that will be available on-line while the unit is being covered. These problems will stress basic equation manipulation and are set up so that students can retry the problem set as many times as they wish as the software will generate new numbers for each attempt. This is meant to develop mastery of the math skills required for the unit. About halfway through the unit a multiple choice quiz will be administered to check student understanding of concepts and equations covered to that point. At the end of each unit there will be a two part exam. The first part will be an in-class collaborative free response question that students will have one period to complete. The question will be based on a released AP question and will serve as both part of the exam grade for the unit and as a final review before the individual assessment, which will be given on the following day. The individual section of the exam will consist of two or three free response topics that stress the main concepts of the unit.

Grading System:

AP Physics 2 students are evaluated using a hybrid grading system. Fifty points of the marking period grade will be standards based. Students are expected to demonstrate mastery of ten identified standards over the course of the marking period through a variety of assessments. The standards reflect fundamental physics principles (for example "Apply Ohm's Law to situations involving electricity") and sound scientific practices (for example "Perform data analysis and evaluation of evidence"). Students will have multiple opportunities to show mastery of each standard and must have demonstrated continued mastery of every standard to receive the fifty points.

The other fifty points of the marking period grade will be based on traditional assessments according to the following distribution:

25 points – Unit exams and lab presentations

- 15 points Laboratory work (Including reports and notebooks)
- 10 points Quizzes, problem sets and pre-tests

Primary Text:

Urone, Paul Peter., Roger Hinrichs, Kim Dirks, and Manjula Sharma. College Physics. Houston, TX: OpenStax College, Rice University, 2013.

Secondary Text (Classroom set):

Serway, Raymond A., Robert J. Beichner, and John W. Jewett. Physics for Scientists and Engineers. 5th ed.

Pacific Grove, CA: Brooks/Cole, 2000.

Additional Resources:

- Lewin, Walter. 8.01 Physics I: Classical Mechanics, Fall 1999. MIT OpenCourseWare: Massachusetts Institute of Technology. < http://ocw.mit.edu>
- Lewin, Walter, John Belcher, and Peter Dourmashkin. 8.02SC Physics II: Electricity and Magnetism, Fall 2010. MIT OpenCourseWare: Massachusetts Institute of Technology. < http://ocw.mit.edu>
- Mavalvala, Nergis, Walter Lewin, and Wolfgang Ketterle. 8.03 Physics III: Vibrations and Waves, Fall 2004. MIT OpenCourseWare: Massachusetts Institute of Technology. < http://ocw.mit.edu>
- MIT Department of Physics Technical Services Group. RES.8-003 Physics Demonstration Videos, Spring 2012 MIT OpenCourseWare: Massachusetts Institute of Technology. < http://ocw.mit.edu>
- "PhET: Free Online Physics, Chemistry, Biology, Earth Science and Math Simulations." PhET Project: University of Colorado. http://phet.colorado.edu/.

Course Outline and Correlation to Big Ideas

Unit	BI	BI	BI	BI	BI	BI	BI
	1	2	3	4	5	6	7
AP Physics 1 Review and Lab Techniques	✓		~	~	✓		<u> </u>
Significant Digits							l
Absolute and Relative Error							1
Sources of Uncertainty vs. Avoidable Errors							1
Graphing Data							l
Newton' Laws							l
Conservation Laws							<u> </u>
Fluid Mechanics	✓		\checkmark	✓	✓		
Pressure and Density							
Pressure with Depth							1
 Pascal's and Archimedes' Principles 							
Buoyant Force							l
Flow Rate and Continuity							l
Bernoulli's Equation							
Thermal Physics	\checkmark			\checkmark	\checkmark		\checkmark
Thermal Definitions							
Internal Energy vs. Heat							l
Heat Transfer							l
Thermal Expansion							l
Ideal Gas Laws							l
Kinetic Theory of Gases							ĺ
First Law of Thermodynamics							l
PV Diagrams and Gas Cycles							l
Second Law of Thermodynamics							
Electrostatics							
Conservation of Charge							
Coulomb's Law							l
Electric Field							1
Electrostatic Equilibrium							l
Electric Potential Difference and Electric Potential Energy							l
Equipotential Lines and Surfaces							
Work and Energy in Electric Fields							l
Circuits and Capacitance	✓	✓		✓	✓		
Current							
Ohm's Law and Resistance							
Series and Parallel Resistors							
Kirchhoff's Rules							
Capacitance and Parallel Plate Capacitors							
Dielectrics							1
Series and Parallel Capacitors							1
RC Circuits							

	Unit	BI	BI	BI	BI	BI	BI	BI
		1	2	3	4	5	6	7
Magne	tism	\checkmark	\checkmark	\checkmark	\checkmark			
•	Properties of Magnets							
•	Magnetic Fields							
•	Ferromagnetism							
•	Force on a Moving Charge							
•	Force on a Current Carrying Wire							
•	Magnetic Flux							
•	Faraday's and Lenz's Laws							
•	Mutual Inductance and Transformers							
Optics							\checkmark	
•	Diffraction, Refraction and Reflection							
•	Superposition and Interference							
•	Single and Double Slit Diffraction							
•	Diffraction Gratings							
•	Snell's Law and Total Internal Reflection							
•	Spherical Mirrors							
•	Thin Lenses							
Atomic	c, Nuclear and Quantum Physics	✓		✓	\checkmark	\checkmark	\checkmark	✓
•	Photoelectric Effect							
•	Wave-Particle Duality							
•	Compton Effect and Davison-Germer Experiment							
•	Mass-Energy Equivalence							
•	Quantum Model of the Atom							
•	Photon Emission and Absorption							
•	Radioactive Decay and Half-life							
Capsto	ne Projects	✓	✓	✓	✓	✓	✓	✓
•	Research Project: Groups of students will be assigned a device or							
	system that could be found in their houses that uses both electricity							
	and magnetism. For example a group may be assigned circuit							
	breakers or a "fenceless" pet containment system. Students will be							
	required to research the science behind how their device works.							
	Each Group will then be required to teach the class about their							
	selected device and how it works and to answer questions from							
	their peers.							
•	Experiment: Groups of students will be responsible for designing							
	and conducting an experiment that investigates a topic not covered							
	in the labs already completed this year. They will then present their							
	conclusions to their peers and be prepared to defend them							

Lab Experiments and Activities

Experiments and activities are classified according to the following categories:

- Teacher Directed (**TD**): Short activities in which students follow given instructions to collect data and reach a conclusion
- Guided Inquiry (GI): An experiment in which students are given a problem statement or objective and are required to create a procedure to reach a conclusion
- Computer-based Inquiry (CBI): Activity in which students use a computer simulation to collect data and reach a conclusion
- Open Inquiry (OI): Experiment in which students are responsible for the entire process of creating a hypothesis and testing it with the teacher only acting as a consultant

Experiment/Activity		Туре			
	TD	GI	CBI	01	
Graphing Newton's 2 nd Law – Students will collect data in an attempt to graphically		✓			
verify Newton's 2 nd Law					
Non-ohmic Resistance – Students examine the relationship between current,		✓			
resistance and voltage for a non-ohmic resistor					
Conservation of Momentum – Student will use video analysis software to examine		\checkmark			
the momentum of an elastic collision					
Density and Buoyancy – Students will use a computer simulation to investigate the			\checkmark		
effect density has on the buoyant force					
Buoyant Force – Students will determine the density of an unknown metal by using				✓	
the apparent weight of the metal					
Torricelli's Law – Students will derive Torricelli's Law using projectile motion and		\checkmark			
conservation of energy					
Ideal Gas Laws – Students will determine the relationships between pressure,			\checkmark		
temperature and volume for ideal gases					
Heat Transfer – Students will examine the factors that affect the rate of heat			\checkmark		
transfer					
Thermal Expansion – Students will derive the formula for linear thermal expansion			✓		
First Law – Students will use a computer simulation to verify the First Law of			\checkmark		
Thermodynamics					
Gas Cycle – Students will use a computer simulation to examine the net work done			\checkmark		
on a gas					
Electric Fields and Equipotentials – Students will use a potential demonstrator to	 ✓ 				
examine electric fields and determine the relationship between electric field lines					
and equipotential lines					
Coulomb's Law – Students will verify Coulomb's Law using a computer simulation			✓		
Coulomb's Law Video Analysis – Students will use video analysis software and				✓	
vector math to examine Coulomb's Law					
Potential Energy – Students will use a computer simulation to examine the			\checkmark		
potential energy of a system of point charges					
Millikan Experiment – Student will determine the fundamental charge on an			✓		
electron					
Parallel Plate Capacitor – Students will examine the effect of area and plate			✓		
separation on the capacitance of a parallel plate capacitor					

Experiment/Activity		Туре				
		GI	CBI	01		
Dielectrics – Students will examine the effect of a dielectric on capacitance			✓			
Series and Parallel Capacitors – Students will derive the formulas for series and				~		
parallel arrangements of capacitors						
Circuit Design – Students will design and construct a circuit containing both		✓				
resistors and capacitors to meet given criteria. The circuit will then be analyzed						
using Kirchhoff's Laws and steady state RC conditions. Final designs will be						
presented to the class for peer review and critique.						
Mapping Magnetic Fields – Students will map magnetic fields around a bar magnet,	✓					
solenoid and straight wire in order to draw conclusions about the direction of						
magnetic field lines						
Magnetic Field Around a Wire – Students will conduct an experiment to determine		✓				
the relationship between distance from a wire and magnetic field strength						
Magnetic Force on a Particle – Students will collect data to determine the equation			✓			
relating force, velocity and charge						
Magnetic Field of a Solenoid – Students will examine the relationships between		✓				
magnetic field strength, current and number of loops						
Induction – Students will examine the emf induced by a magnet dropping through a		✓				
coil of wire and determine the relationship between the rate of change of flux and						
induced emf						
Transformers – Students will investigate a real-world transformer to identify if		✓				
energy is conserved						
Ripple Tank – Students will use identify refraction, reflection and diffraction in						
patterns viewed in a ripple tank						
Double Slit – Students will determine the relationship between slit separation and			✓			
the angle at which the first maxima are observed						
Diffraction Grating – Students will use a diffraction grating to determine the				✓		
wavelength of a He-Ne laser						
Reflection – Students will collect data to establish the Law of Reflection		✓				
Mirror Lab – Students will examine the relationship between the radius of			\checkmark			
curvature and the focal length for a spherical mirror						
Snell's Law – Students will examine the refraction of light in order to verify Snell's		✓				
Law of Refraction						
Converging Lenses – Student will use optics benches to examine the relationship		✓				
between object distance, image distance and focal length						
Photoelectric Effect: Cutoff Frequency – Students will use a computer simulation to			 ✓ 			
examine the effect frequency has on the photoelectric effect						
Photoelectric Effect: Work Function – Students will use a computer simulation to			\checkmark			
determine the work function of several materials						
Hydrogen Emission Spectrum – Students will examine the hydrogen emission			 ✓ 			
spectrum to determine the wavelengths and energies of the emitted photons						

Readings and Suggested Problems

Solutions to all the suggested problems are found in the student solution manual.

AP Physics 1 Review and Lab Techniques						
Readings	Suggested Problems					
Chapter 1	Ch 1: 10, 15					
Fluid Mechanics	·					
Readings	Suggested Problems					
Chapter 11	Ch 11: 12, 23, 27, 40					
Chapter 12	Ch 12: 21, 27					
Thermal Physics						
Readings	Suggested Problems					
Chapter 13	Ch 13: 21, 38					
Chapter 14	Ch 14: none					
Chapter 15	Ch 15: 11					
Electrostatics						
Readings	Suggested Problems					
Chapter 18	Ch 18: 20, 32, 44, 50					
Chapter 19 sections 1-4	Ch 19: 17, 23, 29					
Circuits and Capacitance						
Readings	Suggested Problems					
Chapter 19 sections 5 - 7	Ch 19: 46, 59, 66					
Chapter 20	Ch 20: 1, 19, 31, 65					
Chapter 21	Ch 21: 1, 31, 37, 63, 74					
Magnetism						
Readings	Suggested Problems					
Chapter 22	Ch 22: 1, 7, 13, 36, 42, 50					
Chapter 23	Ch 23: 14, 46					
Optics						
Readings	Suggested Problems					
Chapter 24	Ch 24: 8, 17					
Chapter 25	Ch 25: 1, 7, 22, 49, 57					
Chapter 26	Ch 26: none					
Chapter 27	Ch 27: 7, 25, 48					
Atomic, Nuclear and Quantum Physics						
Readings	Suggested Problems					
Chapter 29	Ch 29: 7, 13, 33, 40, 54					
Chapter 30	Ch 30: 12, 18, 33					
Chapter 31	Ch 31: 22, 34, 40					