
AP Physics C Test #6 Pretest Problem

A student performs an experiment to measure ε_0 , the permittivity of free space. The apparatus used consists of a spring with an unstretched length of $L_0 = 10.0$ cm that is hung from a ring stand. Ball 1, with a mass of 50 g, is then hung from the spring and allowed to come to rest at its equilibrium position. The length L of the spring is measured at this equilibrium position and found to be 10.5 cm. A charge of 30 nC is placed on Ball 1 and a charge of 6 μ C is placed on a second ball, Ball 2. Ball 2 is then placed at various distances **R** from Ball 1 and the length of the spring is measured for each equilibrium position of Ball 1. The data the student collected is displayed in the chart below.

R (cm)	L (cm)	
2.0	14.6	
2.5	13.1	
3.0	12.3	
3.5	11.8	
4.0	11.5	

1) What is the value of the force constant **k** for the spring in this experiment?

2) Derive an algebraic expression for Δx (the change in length of the spring) in terms of q_1 and q_2 (the two charges on the balls), k (the force constant, not Coulomb's constant), R, ϵ_0 and any other fundamental constants necessary. Do not substitute any known values into your expression.

3) The student wishes to make a linear graph of the data collected. What values should be graphed according to your expression from question #2? Fill in the blank columns in the data table with the values. Be sure to include a column header and the proper units.

4) Make a linear graph of the two values you identified in question #3. Be sure to properly label and number the axes of the graph and include a best fit line for the data points.

5) Calculate an experimental value of ε_0 from the slope of your graph.